Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Radial Concentration Gradient of Indole-3-Acetic Acid Is Related to Secondary Xylem Development in Hybrid Aspen.

Identifieur interne : 004A14 ( Main/Exploration ); précédent : 004A13; suivant : 004A15

A Radial Concentration Gradient of Indole-3-Acetic Acid Is Related to Secondary Xylem Development in Hybrid Aspen.

Auteurs : H. Tuominen ; L. Puech ; S. Fink ; B. Sundberg

Source :

RBID : pubmed:12223825

Abstract

The radial distribution pattern of indole-3-acetic acid (IAA) was determined across the developing tissues of the cambial region in the stem of hybrid aspen (Populus tremula L. x Populus tremuloides Michx). IAA content was measured in consecutive tangential cryo-sections using a microscale mass spectrometry technique. Analysis was performed with wild-type and transgenic trees with an ectopic expression of Agrobacterium tumefaciens IAA-biosynthetic genes. In all tested trees IAA was distributed as a steep concentration gradient across the developing tissues of the cambial region. The peak level of IAA was within the cambial zone, where cell division takes place. Low levels were reached in the region where secondary wall formation was initiated. The transgenic trees displayed a lower peak level and a wider radial gradient of IAA compared with the wild type. This alteration was related to a lower rate of cambial cell division and a longer duration of xylem cell expansion in the transgenic trees, resulting in a decreased xylem production and a larger fiber lumen area. The results indicate that IAA has a role in regulating not only the rate of physiological processes such as cell division, but also the duration of developmental processes such as xylem fiber expansion, suggesting that IAA functions as a morphogen, conveying positional information during xylem development.

DOI: 10.1104/pp.115.2.577
PubMed: 12223825
PubMed Central: PMC158517


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Radial Concentration Gradient of Indole-3-Acetic Acid Is Related to Secondary Xylem Development in Hybrid Aspen.</title>
<author>
<name sortKey="Tuominen, H" sort="Tuominen, H" uniqKey="Tuominen H" first="H." last="Tuominen">H. Tuominen</name>
<affiliation>
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden (H.T., B.S.).</nlm:affiliation>
<wicri:noCountry code="subField">B.S.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Puech, L" sort="Puech, L" uniqKey="Puech L" first="L." last="Puech">L. Puech</name>
</author>
<author>
<name sortKey="Fink, S" sort="Fink, S" uniqKey="Fink S" first="S." last="Fink">S. Fink</name>
</author>
<author>
<name sortKey="Sundberg, B" sort="Sundberg, B" uniqKey="Sundberg B" first="B." last="Sundberg">B. Sundberg</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1997">1997</date>
<idno type="RBID">pubmed:12223825</idno>
<idno type="pmid">12223825</idno>
<idno type="pmc">PMC158517</idno>
<idno type="doi">10.1104/pp.115.2.577</idno>
<idno type="wicri:Area/Main/Corpus">004602</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004602</idno>
<idno type="wicri:Area/Main/Curation">004602</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004602</idno>
<idno type="wicri:Area/Main/Exploration">004602</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A Radial Concentration Gradient of Indole-3-Acetic Acid Is Related to Secondary Xylem Development in Hybrid Aspen.</title>
<author>
<name sortKey="Tuominen, H" sort="Tuominen, H" uniqKey="Tuominen H" first="H." last="Tuominen">H. Tuominen</name>
<affiliation>
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden (H.T., B.S.).</nlm:affiliation>
<wicri:noCountry code="subField">B.S.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Puech, L" sort="Puech, L" uniqKey="Puech L" first="L." last="Puech">L. Puech</name>
</author>
<author>
<name sortKey="Fink, S" sort="Fink, S" uniqKey="Fink S" first="S." last="Fink">S. Fink</name>
</author>
<author>
<name sortKey="Sundberg, B" sort="Sundberg, B" uniqKey="Sundberg B" first="B." last="Sundberg">B. Sundberg</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="1997" type="published">1997</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The radial distribution pattern of indole-3-acetic acid (IAA) was determined across the developing tissues of the cambial region in the stem of hybrid aspen (Populus tremula L. x Populus tremuloides Michx). IAA content was measured in consecutive tangential cryo-sections using a microscale mass spectrometry technique. Analysis was performed with wild-type and transgenic trees with an ectopic expression of Agrobacterium tumefaciens IAA-biosynthetic genes. In all tested trees IAA was distributed as a steep concentration gradient across the developing tissues of the cambial region. The peak level of IAA was within the cambial zone, where cell division takes place. Low levels were reached in the region where secondary wall formation was initiated. The transgenic trees displayed a lower peak level and a wider radial gradient of IAA compared with the wild type. This alteration was related to a lower rate of cambial cell division and a longer duration of xylem cell expansion in the transgenic trees, resulting in a decreased xylem production and a larger fiber lumen area. The results indicate that IAA has a role in regulating not only the rate of physiological processes such as cell division, but also the duration of developmental processes such as xylem fiber expansion, suggesting that IAA functions as a morphogen, conveying positional information during xylem development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">12223825</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>115</Volume>
<Issue>2</Issue>
<PubDate>
<Year>1997</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>A Radial Concentration Gradient of Indole-3-Acetic Acid Is Related to Secondary Xylem Development in Hybrid Aspen.</ArticleTitle>
<Pagination>
<MedlinePgn>577-585</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The radial distribution pattern of indole-3-acetic acid (IAA) was determined across the developing tissues of the cambial region in the stem of hybrid aspen (Populus tremula L. x Populus tremuloides Michx). IAA content was measured in consecutive tangential cryo-sections using a microscale mass spectrometry technique. Analysis was performed with wild-type and transgenic trees with an ectopic expression of Agrobacterium tumefaciens IAA-biosynthetic genes. In all tested trees IAA was distributed as a steep concentration gradient across the developing tissues of the cambial region. The peak level of IAA was within the cambial zone, where cell division takes place. Low levels were reached in the region where secondary wall formation was initiated. The transgenic trees displayed a lower peak level and a wider radial gradient of IAA compared with the wild type. This alteration was related to a lower rate of cambial cell division and a longer duration of xylem cell expansion in the transgenic trees, resulting in a decreased xylem production and a larger fiber lumen area. The results indicate that IAA has a role in regulating not only the rate of physiological processes such as cell division, but also the duration of developmental processes such as xylem fiber expansion, suggesting that IAA functions as a morphogen, conveying positional information during xylem development.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tuominen</LastName>
<ForeName>H.</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden (H.T., B.S.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Puech</LastName>
<ForeName>L.</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fink</LastName>
<ForeName>S.</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sundberg</LastName>
<ForeName>B.</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12223825</ArticleId>
<ArticleId IdType="pii">115/2/577</ArticleId>
<ArticleId IdType="pmc">PMC158517</ArticleId>
<ArticleId IdType="doi">10.1104/pp.115.2.577</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Histochem J. 1983 May;15(5):447-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6223902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Jul;108(3):1043-1047</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1995 Oct 30;350(1331):45-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8577849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1947 Feb 21;105(2721):214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17737883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1996 Jul;12(7):253-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8763496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1988 Mar;6(3):196-7, 199-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2483319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 May;86(9):3219-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16594033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Oct;106(2):469-476</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1996 Sep;12(9):359-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8855666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1997 May;17(5):301-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Dec;94(4):1721-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1984 Dec 1;3(12):2723-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9282-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Mar 25;17(6):2362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2468132</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Fink, S" sort="Fink, S" uniqKey="Fink S" first="S." last="Fink">S. Fink</name>
<name sortKey="Puech, L" sort="Puech, L" uniqKey="Puech L" first="L." last="Puech">L. Puech</name>
<name sortKey="Sundberg, B" sort="Sundberg, B" uniqKey="Sundberg B" first="B." last="Sundberg">B. Sundberg</name>
<name sortKey="Tuominen, H" sort="Tuominen, H" uniqKey="Tuominen H" first="H." last="Tuominen">H. Tuominen</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004A14 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004A14 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12223825
   |texte=   A Radial Concentration Gradient of Indole-3-Acetic Acid Is Related to Secondary Xylem Development in Hybrid Aspen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12223825" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020